Unbalanced instabilities of rapidly rotating stratified shear flows
نویسنده
چکیده
The linear stability of a rotating, stratified, inviscid horizontal plane Couette flow in a channel is studied in the limit of strong rotation and stratification. Two dimensionless parameters characterize the flow: the Rossby number ǫ, defined as the ratio of the shear to the Coriolis frequency and assumed small, and the ratio s of the Coriolis frequency to the buoyancy frequency, assumed to satisfy s ≤ 1. An energy argument is used to show that unstable perturbations must have large, O(ǫ) wavenumbers. This motivates the use of a WKB-approach which, in the first instance, provides an approximation for the dispersion relation of the various waves that can propagate in the flow. These are Kelvin waves, trapped near the channel walls, and inertia-gravity waves with or without turning points. Although, the wave phase speeds are found to be real to all algebraic orders in ǫ, we establish that the flow is unconditionally unstable. This is the result of linear resonances between waves with oppositely signed wave momenta. Three modes of instabilities are identified, corresponding to the resonance between (i) a pair of Kelvin waves, (ii) a Kelvin wave and an inertia-gravity wave, and (iii) a pair of inertia-gravity waves. Whilst all three modes of instability are active when the Couette flow is anticyclonic, mode (iii) is the only possible instability mechanism when the flow is cyclonic. We derive asymptotic estimates for the instability growth rates. These are exponentially small in ǫ, of the form Imω = a exp(−Ψ/ǫ) for some positive constants a and Ψ. For the Kelvin-wave instabilities (i), we obtain analytic expressions for a and Ψ; the maximum growth rate, in particular, corresponds to Ψ = 2. For the other types of instabilities, we make the simplifying assumption s ≪ 1 and find that Ψ = 2.80 for (ii) and Ψ = π for (iii). The asymptotic results are confirmed by numerical computations. These reveal, in particular, that the instabilities (iii) have much smaller growth rates in cyclonic flows than in anticyclonic flows, in spite of having both Ψ = π. Our results, which extend those of Kushner et al. (1998) and Yavneh et al. (2001), highlight the limitations of the so-called balanced models, widely used in geophysical fluid dynamics, which filter out Kelvin and inertia-gravity waves and hence predict the stability of the Couette flow. They are also relevant to the stability of Taylor–Couette flows and of astrophysical accretion discs.
منابع مشابه
The dynamics of the radiative envelope of rapidly rotating stars I. A spherical Boussinesq model
Context. The observations of rapidly rotating stars are increasingly detailed and precise thanks to interferometry and asteroseismology; twodimensional models taking into account the hydrodynamics of these stars are very much needed. Aims. A model for studying the dynamics of baroclinic stellar envelope is presented. Methods. This models treats the stellar fluid at the Boussinesq approximation ...
متن کاملInertial waves in rapidly rotating flows: a dynamical systems perspective
An overview of recent developments in a wide variety of enclosed rapidly rotating flows is presented. Highlighted is the interplay between inertial waves, which have been predicted from linear inviscid considerations, and the viscous boundary layer dynamics which result from instabilities as the nonlinearities in the systems are increased. Further, even in the absence of boundary layer instabil...
متن کاملThree-dimensional vortices generated by self-replication in stably stratified rotating shear flows.
A previously unknown instability creates space-filling lattices of 3D vortices in linearly stable, rotating, stratified shear flows. The instability starts from an easily excited critical layer. The layer intensifies by drawing energy from the background shear and rolls up into vortices that excite new critical layers and vortices. The vortices self-similarly replicate to create lattices of tur...
متن کاملUnderstanding critical layers in stratified shear flow instabilities: A wave interaction perspective
In this paper we examine the dynamics of unstable critical layers in stratified shear flows. This is done from the framework of the wave interaction theory of shear instabilities, which views instability as arising from the mutual interaction between wave motions that are present in the background shear and density fields. By formulating a simple analytical model of the structure of vorticity w...
متن کاملCalculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کامل